CTF AI方向专题

平航杯2025

计算机取证AI方向

AI-获得flag1

首先先把crack文件下载到本地,搭建环境

image-20250420204921008

进入网站

image-20250420205437737

这里可以得到在这个模型里面有三个flag(秘密,s1cret,pinghang),可惜在做题的时候因为模型原因只弄出来了两个,那么第一个flag应该就是这个模型藏的秘密,猜测秘密在提示词中,尝试诱导模型说出秘密(这里输入了和比赛时用的一样问题,但是比赛时因为模型问题给了flag1{你很聪明})

image-20250420205945678

得到flag1{you_are_so_smart}

AI-获得flag2

下面来尝试获取flag2(让大模型说出s1cret即可)(要多试试,大模型就是这样)

image-20250420211157633

得到flag2{prompt_is_easy}

AI-获得flag3

下面来尝试获取flag3(让大模型说出pinghang即可)

image-20250420211544426

得到flag3{no_question_can_kill_you}

AI-获得flag4

首先切换到小模型,然后你就会遇上史上最人机的模型了

image-20250420211641796

真的真的巨人机,我在比赛的时候硬是和这个真人机对话了一个多小时

正解是需要llm_attack才行

image-20250420212124853

llm-attacks/llm-attacks: Universal and Transferable Attacks on Aligned Language Models

脚本:

import numpy as np
import torch
import torch.nn as nn
import gc
from transformers import AutoModelForCausalLM, AutoTokenizer
from livelossplot import PlotLosses


np.random.seed(20)
torch.manual_seed(20)
torch.cuda.manual_seed_all(20)

target = "🐍"  # attack string
num_steps = 500
adv_string_init = "!"*200
adv_prefix = adv_string_init
# larger batch_size means more memory (but more likely to succeed)
batch_size = 512
device = 'cuda:0'
topk = 256

def get_embedding_matrix(model):
    return model.transformer.wte.weight

def get_embeddings(model, input_ids):
    return model.transformer.wte(input_ids)

def token_gradients(model, input_ids, input_slice, target_slice, loss_slice):
    """
    Computes gradients of the loss with respect to the coordinates.

    Parameters
    ----------
    model : Transformer Model
        The transformer model to be used.
    input_ids : torch.Tensor
        The input sequence in the form of token ids.
    input_slice : slice
        The slice of the input sequence for which gradients need to be computed.
    target_slice : slice
        The slice of the input sequence to be used as targets.
    loss_slice : slice
        The slice of the logits to be used for computing the loss.

    Returns
    -------
    torch.Tensor
        The gradients of each token in the input_slice with respect to the loss.
    """

    embed_weights = get_embedding_matrix(model)
    one_hot = torch.zeros(
        input_ids[input_slice].shape[0],
        embed_weights.shape[0],
        device=model.device,
        dtype=embed_weights.dtype
    )
    one_hot.scatter_(
        1,
        input_ids[input_slice].unsqueeze(1),
        torch.ones(one_hot.shape[0], 1,
                   device=model.device, dtype=embed_weights.dtype)
    )
    one_hot.requires_grad_()
    input_embeds = (one_hot @ embed_weights).unsqueeze(0)

    # now stitch it together with the rest of the embeddings
    embeds = get_embeddings(model, input_ids.unsqueeze(0)).detach()
    full_embeds = torch.cat(
        [
            input_embeds,
            embeds[:, input_slice.stop:, :]
        ],
        dim=1
    )

    logits = model(inputs_embeds=full_embeds).logits
    targets = input_ids[target_slice]
    loss = nn.CrossEntropyLoss()(logits[0, loss_slice, :], targets)

    loss.backward()

    grad = one_hot.grad.clone()
    grad = grad / grad.norm(dim=-1, keepdim=True)

    return grad

def sample_control(control_toks, grad, batch_size):

    control_toks = control_toks.to(grad.device)

    original_control_toks = control_toks.repeat(batch_size, 1)
    new_token_pos = torch.arange(
        0,
        len(control_toks),
        len(control_toks) / batch_size,
        device=grad.device
    ).type(torch.int64)

    top_indices = (-grad).topk(topk, dim=1).indices
    new_token_val = torch.gather(
        top_indices[new_token_pos], 1,
        torch.randint(0, topk, (batch_size, 1),
                      device=grad.device)
    )
    new_control_toks = original_control_toks.scatter_(
        1, new_token_pos.unsqueeze(-1), new_token_val)
    return new_control_toks

def get_filtered_cands(tokenizer, control_cand, filter_cand=True, curr_control=None):
    cands, count = [], 0
    for i in range(control_cand.shape[0]):
        decoded_str = tokenizer.decode(
            control_cand[i], skip_special_tokens=True)
        if filter_cand:
            if decoded_str != curr_control \
                    and len(tokenizer(decoded_str, add_special_tokens=False).input_ids) == len(control_cand[i]):
                cands.append(decoded_str)
            else:
                count += 1
        else:
            cands.append(decoded_str)

    if filter_cand:
        cands = cands + [cands[-1]] * (len(control_cand) - len(cands))
    return cands

def get_logits(*, model, tokenizer, input_ids, control_slice, test_controls, return_ids=False, batch_size=512):

    if isinstance(test_controls[0], str):
        max_len = control_slice.stop - control_slice.start
        test_ids = [
            torch.tensor(tokenizer(
                control, add_special_tokens=False).input_ids[:max_len], device=model.device)
            for control in test_controls
        ]
        pad_tok = 0
        while pad_tok in input_ids or any([pad_tok in ids for ids in test_ids]):
            pad_tok += 1
        nested_ids = torch.nested.nested_tensor(test_ids)
        test_ids = torch.nested.to_padded_tensor(
            nested_ids, pad_tok, (len(test_ids), max_len))
    else:
        raise ValueError(
            f"test_controls must be a list of strings, got {type(test_controls)}")

    if not (test_ids[0].shape[0] == control_slice.stop - control_slice.start):
        raise ValueError((
            f"test_controls must have shape "
            f"(n, {control_slice.stop - control_slice.start}), "
            f"got {test_ids.shape}"
        ))

    locs = torch.arange(control_slice.start, control_slice.stop).repeat(
        test_ids.shape[0], 1).to(model.device)
    ids = torch.scatter(
        input_ids.unsqueeze(0).repeat(test_ids.shape[0], 1).to(model.device),
        1,
        locs,
        test_ids
    )
    if pad_tok >= 0:
        attn_mask = (ids != pad_tok).type(ids.dtype)
    else:
        attn_mask = None

    if return_ids:
        del locs, test_ids
        gc.collect()
        return forward(model=model, input_ids=ids, attention_mask=attn_mask, batch_size=batch_size), ids
    else:
        del locs, test_ids
        logits = forward(model=model, input_ids=ids,
                         attention_mask=attn_mask, batch_size=batch_size)
        del ids
        gc.collect()
        return logits

def forward(*, model, input_ids, attention_mask, batch_size=512):

    logits = []
    for i in range(0, input_ids.shape[0], batch_size):

        batch_input_ids = input_ids[i:i+batch_size]
        if attention_mask is not None:
            batch_attention_mask = attention_mask[i:i+batch_size]
        else:
            batch_attention_mask = None

        logits.append(model(input_ids=batch_input_ids,
                      attention_mask=batch_attention_mask).logits)

        gc.collect()
        del batch_input_ids, batch_attention_mask

    return torch.cat(logits, dim=0)

def target_loss(logits, ids, target_slice):
    crit = nn.CrossEntropyLoss(reduction='none')
    loss_slice = slice(target_slice.start-1, target_slice.stop-1)
    loss = crit(logits[:, loss_slice, :].transpose(1, 2), ids[:, target_slice])
    return loss.mean(dim=-1)

model = AutoModelForCausalLM.from_pretrained(
    '.',
    torch_dtype=torch.float16,
    trust_remote_code=True,
).to(device).eval()
tokenizer = AutoTokenizer.from_pretrained(
    ".", use_fast=False)

def is_success(prompt):
    input_ids = tokenizer.encode(prompt, return_tensors="pt")
    output = model.generate(input_ids.to(
        device), max_new_tokens=50, num_beams=1, temperature=0)
    output = output[:, len(input_ids[0]):]
    output_text = tokenizer.decode(output[0], skip_special_tokens=True)
    print(output_text)
    if output_text.lower().find(target.lower()) != -1:
        return True
    return False

plotlosses = PlotLosses()
adv_slice = slice(0, len(tokenizer.encode(
    adv_string_init, add_special_tokens=False)))
target_slice = slice(adv_slice.stop, adv_slice.stop +
                     len(tokenizer.encode(target, add_special_tokens=False)))
loss_slice = slice(target_slice.start-1, target_slice.stop-1)

best_new_adv_prefix = ''

for i in range(num_steps):

    input_ids = tokenizer.encode(
        adv_prefix+target, add_special_tokens=False, return_tensors='pt').squeeze()

    input_ids = input_ids.to(device)

    coordinate_grad = token_gradients(model,
                                      input_ids,
                                      adv_slice,
                                      target_slice,
                                      loss_slice)

    with torch.no_grad():

        adv_prefix_tokens = input_ids[adv_slice].to(device)

        new_adv_prefix_toks = sample_control(adv_prefix_tokens,
                                             coordinate_grad,
                                             batch_size)

        new_adv_prefix = get_filtered_cands(tokenizer,
                                            new_adv_prefix_toks,
                                            filter_cand=True,
                                            curr_control=adv_prefix)

        logits, ids = get_logits(model=model,
                                 tokenizer=tokenizer,
                                 input_ids=input_ids,
                                 control_slice=adv_slice,
                                 test_controls=new_adv_prefix,
                                 return_ids=True,
                                 batch_size=batch_size)  # decrease this number if you run into OOM.

        losses = target_loss(logits, ids, target_slice)

        best_new_adv_prefix_id = losses.argmin()
        best_new_adv_prefix = new_adv_prefix[best_new_adv_prefix_id]

        current_loss = losses[best_new_adv_prefix_id]

        adv_prefix = best_new_adv_prefix

    # Create a dynamic plot for the loss.
    plotlosses.update({'Loss': current_loss.detach().cpu().numpy()})
    plotlosses.send()

    print(f"Current Prefix:{best_new_adv_prefix}", end='\r')
    if is_success(best_new_adv_prefix):
        break

    del coordinate_grad, adv_prefix_tokens
    gc.collect()
    torch.cuda.empty_cache()

if is_success(best_new_adv_prefix):
    print("SUCCESS:", best_new_adv_prefix)

首先搭建攻击环境,你需要安装cuda toolkit来运行wp给的脚本

image-20250420215048310

然后安装对应版本的pytorch

image-20250420220840014

然后就可以运行了

image-20250420221507789

image-20250420221719315

得到攻击语句,使用即可

image-20250420221759474

得到flag4{You_have_mastered_the_AI}